ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.12193
12
29

Neural Code Search Revisited: Enhancing Code Snippet Retrieval through Natural Language Intent

27 August 2020
Geert Heyman
Tom Van Cutsem
ArXivPDFHTML
Abstract

In this work, we propose and study annotated code search: the retrieval of code snippets paired with brief descriptions of their intent using natural language queries. On three benchmark datasets, we investigate how code retrieval systems can be improved by leveraging descriptions to better capture the intents of code snippets. Building on recent progress in transfer learning and natural language processing, we create a domain-specific retrieval model for code annotated with a natural language description. We find that our model yields significantly more relevant search results (with absolute gains up to 20.6% in mean reciprocal rank) compared to state-of-the-art code retrieval methods that do not use descriptions but attempt to compute the intent of snippets solely from unannotated code.

View on arXiv
Comments on this paper