ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.12671
46
6
v1v2 (latest)

Data-driven control on encrypted data

28 August 2020
A. Alexandru
Anastasios Tsiamis
George J. Pappas
ArXiv (abs)PDFHTML
Abstract

We provide an efficient and private solution to the problem of encryption-aware data-driven control. We investigate a Control as a Service scenario, where a client employs a specialized outsourced control solution from a service provider. The privacy-sensitive model parameters of the client's system are either not available or variable. Hence, we require the service provider to perform data-driven control in a privacy-preserving manner on the input-output data samples from the client. To this end, we co-design the control scheme with respect to both control performance and privacy specifications. First, we formulate our control algorithm based on recent results from the behavioral framework, and we prove closeness between the classical formulation and our formulation that accounts for noise and precision errors arising from encryption. Second, we use a state-of-the-art leveled homomorphic encryption scheme to enable the service provider to perform high complexity computations on the client's encrypted data, ensuring privacy. Finally, we streamline our solution by exploiting the rich structure of data, and meticulously employing ciphertext batching and rearranging operations to enable parallelization. This solution achieves more than twofold runtime and memory improvements compared to our prior work.

View on arXiv
Comments on this paper