ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.13443
6
28

On the Quality Requirements of Demand Prediction for Dynamic Public Transport

31 August 2020
Inon Peled
Kelvin Lee
Yu Jiang
Justin Dauwels
Francisco Câmara Pereira
    AI4TS
ArXivPDFHTML
Abstract

As Public Transport (PT) becomes more dynamic and demand-responsive, it increasingly depends on predictions of transport demand. But how accurate need such predictions be for effective PT operation? We address this question through an experimental case study of PT trips in Metropolitan Copenhagen, Denmark, which we conduct independently of any specific prediction models. First, we simulate errors in demand prediction through unbiased noise distributions that vary considerably in shape. Using the noisy predictions, we then simulate and optimize demand-responsive PT fleets via a linear programming formulation and measure their performance. Our results suggest that the optimized performance is mainly affected by the skew of the noise distribution and the presence of infrequently large prediction errors. In particular, the optimized performance can improve under non-Gaussian vs. Gaussian noise. We also find that dynamic routing could reduce trip time by at least 23% vs. static routing. This reduction is estimated at 809,000 EUR/year in terms of Value of Travel Time Savings for the case study.

View on arXiv
Comments on this paper