ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.01989
6
10

A Comprehensive Analysis of Information Leakage in Deep Transfer Learning

4 September 2020
Cen Chen
Bingzhe Wu
Minghui Qiu
Li Wang
Jun Zhou
    PILM
ArXivPDFHTML
Abstract

Transfer learning is widely used for transferring knowledge from a source domain to the target domain where the labeled data is scarce. Recently, deep transfer learning has achieved remarkable progress in various applications. However, the source and target datasets usually belong to two different organizations in many real-world scenarios, potential privacy issues in deep transfer learning are posed. In this study, to thoroughly analyze the potential privacy leakage in deep transfer learning, we first divide previous methods into three categories. Based on that, we demonstrate specific threats that lead to unintentional privacy leakage in each category. Additionally, we also provide some solutions to prevent these threats. To the best of our knowledge, our study is the first to provide a thorough analysis of the information leakage issues in deep transfer learning methods and provide potential solutions to the issue. Extensive experiments on two public datasets and an industry dataset are conducted to show the privacy leakage under different deep transfer learning settings and defense solution effectiveness.

View on arXiv
Comments on this paper