ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.03472
82
0
v1v2 (latest)

Shannon entropy estimation for linear processes

8 September 2020
Timothy Fortune
Hailin Sang
ArXiv (abs)PDFHTML
Abstract

In this paper, we estimate the Shannon entropy S(f)=−\E[log⁡(f(x))]S(f) = -\E[ \log (f(x))]S(f)=−\E[log(f(x))] of a one-sided linear process with probability density function f(x)f(x)f(x). We employ the integral estimator Sn(f)S_n(f)Sn​(f), which utilizes the standard kernel density estimator fn(x)f_n(x)fn​(x) of f(x)f(x)f(x). We show that Sn(f)S_n (f)Sn​(f) converges to S(f)S(f)S(f) almost surely and in \L2\L^2\L2 under reasonable conditions.

View on arXiv
Comments on this paper