ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.03488
11
65

Adversarial Attack on Large Scale Graph

8 September 2020
Jintang Li
Tao Xie
Liang Chen
Fenfang Xie
Xiangnan He
Zibin Zheng
    AAML
ArXivPDFHTML
Abstract

Recent studies have shown that graph neural networks (GNNs) are vulnerable against perturbations due to lack of robustness and can therefore be easily fooled. Currently, most works on attacking GNNs are mainly using gradient information to guide the attack and achieve outstanding performance. However, the high complexity of time and space makes them unmanageable for large scale graphs and becomes the major bottleneck that prevents the practical usage. We argue that the main reason is that they have to use the whole graph for attacks, resulting in the increasing time and space complexity as the data scale grows. In this work, we propose an efficient Simplified Gradient-based Attack (SGA) method to bridge this gap. SGA can cause the GNNs to misclassify specific target nodes through a multi-stage attack framework, which needs only a much smaller subgraph. In addition, we present a practical metric named Degree Assortativity Change (DAC) to measure the impacts of adversarial attacks on graph data. We evaluate our attack method on four real-world graph networks by attacking several commonly used GNNs. The experimental results demonstrate that SGA can achieve significant time and memory efficiency improvements while maintaining competitive attack performance compared to state-of-art attack techniques. Codes are available via: https://github.com/EdisonLeeeee/SGAttack.

View on arXiv
Comments on this paper