This paper presents the 1st place solution to the Google Landmark Retrieval 2020 Competition on Kaggle. The solution is based on metric learning to classify numerous landmark classes, and uses transfer learning with two train datasets, fine-tuning on bigger images, adjusting loss weight for cleaner samples, and esemble to enhance the model's performance further. Finally, it scored 0.38677 mAP@100 on the private leaderboard.
View on arXiv