ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.05748
35
1
v1v2 (latest)

Visual-speech Synthesis of Exaggerated Corrective Feedback

12 September 2020
Yaohua Bu
Weijun Li
Tianyi Ma
S. Chen
Jia Jia
Kun Li
Xiaobo Lu
ArXiv (abs)PDFHTML
Abstract

To provide more discriminative feedback for the second language (L2) learners to better identify their mispronunciation, we propose a method for exaggerated visual-speech feedback in computer-assisted pronunciation training (CAPT). The speech exaggeration is realized by an emphatic speech generation neural network based on Tacotron, while the visual exaggeration is accomplished by ADC Viseme Blending, namely increasing Amplitude of movement, extending the phone's Duration and enhancing the color Contrast. User studies show that exaggerated feedback outperforms non-exaggerated version on helping learners with pronunciation identification and pronunciation improvement.

View on arXiv
Comments on this paper