ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.06819
11
15

MatScIE: An automated tool for the generation of databases of methods and parameters used in the computational materials science literature

15 September 2020
Souradip Guha
Ankan Mullick
Jatin Agrawal
Swetarekha Ram
Samir Ghui
Seung-Cheol Lee
S. Bhattacharjee
Pawan Goyal
ArXivPDFHTML
Abstract

The number of published articles in the field of materials science is growing rapidly every year. This comparatively unstructured data source, which contains a large amount of information, has a restriction on its re-usability, as the information needed to carry out further calculations using the data in it must be extracted manually. It is very important to obtain valid and contextually correct information from the online (offline) data, as it can be useful not only to generate inputs for further calculations, but also to incorporate them into a querying framework. Retaining this context as a priority, we have developed an automated tool, MatScIE (Material Scince Information Extractor) that can extract relevant information from material science literature and make a structured database that is much easier to use for material simulations. Specifically, we extract the material details, methods, code, parameters, and structure from the various research articles. Finally, we created a web application where users can upload published articles and view/download the information obtained from this tool and can create their own databases for their personal uses.

View on arXiv
Comments on this paper