ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.08136
13
28

Multidimensional Scaling, Sammon Mapping, and Isomap: Tutorial and Survey

17 September 2020
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
ArXivPDFHTML
Abstract

Multidimensional Scaling (MDS) is one of the first fundamental manifold learning methods. It can be categorized into several methods, i.e., classical MDS, kernel classical MDS, metric MDS, and non-metric MDS. Sammon mapping and Isomap can be considered as special cases of metric MDS and kernel classical MDS, respectively. In this tutorial and survey paper, we review the theory of MDS, Sammon mapping, and Isomap in detail. We explain all the mentioned categories of MDS. Then, Sammon mapping, Isomap, and kernel Isomap are explained. Out-of-sample embedding for MDS and Isomap using eigenfunctions and kernel mapping are introduced. Then, Nystrom approximation and its use in landmark MDS and landmark Isomap are introduced for big data embedding. We also provide some simulations for illustrating the embedding by these methods.

View on arXiv
Comments on this paper