ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.08153
14
34

End-to-End Neural Event Coreference Resolution

17 September 2020
Yaojie Lu
Hongyu Lin
Jialong Tang
Xianpei Han
Le Sun
ArXivPDFHTML
Abstract

Traditional event coreference systems usually rely on pipeline framework and hand-crafted features, which often face error propagation problem and have poor generalization ability. In this paper, we propose an End-to-End Event Coreference approach -- E3C neural network, which can jointly model event detection and event coreference resolution tasks, and learn to extract features from raw text automatically. Furthermore, because event mentions are highly diversified and event coreference is intricately governed by long-distance, semantic-dependent decisions, a type-guided event coreference mechanism is further proposed in our E3C neural network. Experiments show that our method achieves new state-of-the-art performance on two standard datasets.

View on arXiv
Comments on this paper