ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.09084
50
22
v1v2 (latest)

Intimate Partner Violence and Injury Prediction From Radiology Reports

28 August 2020
Irene Y. Chen
Emily Alsentzer
Hyesun Park
Richard Thomas
B. Gosangi
Rahul Gujrathi
B. Khurana
ArXiv (abs)PDFHTML
Abstract

Intimate partner violence (IPV) is an urgent, prevalent, and under-detected public health issue. We present machine learning models to assess patients for IPV and injury. We train the predictive algorithms on radiology reports with 1) IPV labels based on entry to a violence prevention program and 2) injury labels provided by emergency radiology fellowship-trained physicians. Our dataset includes 34,642 radiology reports and 1479 patients of IPV victims and control patients. Our best model predicts IPV a median of 3.08 years before violence prevention program entry with a sensitivity of 64% and a specificity of 95%. We conduct error analysis to determine for which patients our model has especially high or low performance and discuss next steps for a deployed clinical risk model.

View on arXiv
Comments on this paper