ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.09247
11
33

Bias Field Poses a Threat to DNN-based X-Ray Recognition

19 September 2020
Binyu Tian
Qing-Wu Guo
Felix Juefei Xu
W. L. Chan
Yupeng Cheng
Xiaohong Li
Xiaofei Xie
Shengchao Qin
    AAML
    AI4CE
ArXivPDFHTML
Abstract

The chest X-ray plays a key role in screening and diagnosis of many lung diseases including the COVID-19. More recently, many works construct deep neural networks (DNNs) for chest X-ray images to realize automated and efficient diagnosis of lung diseases. However, bias field caused by the improper medical image acquisition process widely exists in the chest X-ray images while the robustness of DNNs to the bias field is rarely explored, which definitely poses a threat to the X-ray-based automated diagnosis system. In this paper, we study this problem based on the recent adversarial attack and propose a brand new attack, i.e., the adversarial bias field attack where the bias field instead of the additive noise works as the adversarial perturbations for fooling the DNNs. This novel attack posts a key problem: how to locally tune the bias field to realize high attack success rate while maintaining its spatial smoothness to guarantee high realisticity. These two goals contradict each other and thus has made the attack significantly challenging. To overcome this challenge, we propose the adversarial-smooth bias field attack that can locally tune the bias field with joint smooth & adversarial constraints. As a result, the adversarial X-ray images can not only fool the DNNs effectively but also retain very high level of realisticity. We validate our method on real chest X-ray datasets with powerful DNNs, e.g., ResNet50, DenseNet121, and MobileNet, and show different properties to the state-of-the-art attacks in both image realisticity and attack transferability. Our method reveals the potential threat to the DNN-based X-ray automated diagnosis and can definitely benefit the development of bias-field-robust automated diagnosis system.

View on arXiv
Comments on this paper