ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.10008
16
18

Kernel-Based Smoothness Analysis of Residual Networks

21 September 2020
Tom Tirer
Joan Bruna
Raja Giryes
ArXivPDFHTML
Abstract

A major factor in the success of deep neural networks is the use of sophisticated architectures rather than the classical multilayer perceptron (MLP). Residual networks (ResNets) stand out among these powerful modern architectures. Previous works focused on the optimization advantages of deep ResNets over deep MLPs. In this paper, we show another distinction between the two models, namely, a tendency of ResNets to promote smoother interpolations than MLPs. We analyze this phenomenon via the neural tangent kernel (NTK) approach. First, we compute the NTK for a considered ResNet model and prove its stability during gradient descent training. Then, we show by various evaluation methodologies that for ReLU activations the NTK of ResNet, and its kernel regression results, are smoother than the ones of MLP. The better smoothness observed in our analysis may explain the better generalization ability of ResNets and the practice of moderately attenuating the residual blocks.

View on arXiv
Comments on this paper