ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.10343
19
43

Gamma distribution-based sampling for imbalanced data

22 September 2020
Firuz Kamalov
Dmitry Denisov
ArXivPDFHTML
Abstract

Imbalanced class distribution is a common problem in a number of fields including medical diagnostics, fraud detection, and others. It causes bias in classification algorithms leading to poor performance on the minority class data. In this paper, we propose a novel method for balancing the class distribution in data through intelligent resampling of the minority class instances. The proposed method is based on generating new minority instances in the neighborhood of the existing minority points via a gamma distribution. Our method offers a natural and coherent approach to balancing the data. We conduct a comprehensive numerical analysis of the new sampling technique. The experimental results show that the proposed method outperforms the existing state-of-the-art methods for imbalanced data. Concretely, the new sampling technique produces the best results on 12 out of 24 real life as well as synthetic datasets. For comparison, the SMOTE method achieves the top score on only 1 dataset. We conclude that the new technique offers a simple yet effective sampling approach to balance data.

View on arXiv
Comments on this paper