326
v1v2v3v4v5v6v7 (latest)

Non-asymptotic oracle inequalities for the Lasso in high-dimensional mixture of experts

Abstract

We investigate the estimation properties of the mixture of experts (MoE) model in a high-dimensional setting, where the number of predictors is much larger than the sample size, and for which the literature is particularly lacking in theoretical results. We consider the class of softmax-gated Gaussian MoE (SGMoE) models, defined as MoE models with softmax gating functions and Gaussian experts, and focus on the theoretical properties of their l1l_1-regularized estimation via the Lasso. To the best of our knowledge, we are the first to investigate the l1l_1-regularization properties of SGMoE models from a non-asymptotic perspective, under the mildest assumptions, namely the boundedness of the parameter space. We provide a lower bound on the regularization parameter of the Lasso penalty that ensures non-asymptotic theoretical control of the Kullback--Leibler loss of the Lasso estimator for SGMoE models. Finally, we carry out a simulation study to empirically validate our theoretical findings.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.