ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.11032
11
35

Streamlining Cross-Document Coreference Resolution: Evaluation and Modeling

23 September 2020
Arie Cattan
Alon Eirew
Gabriel Stanovsky
Mandar Joshi
Ido Dagan
ArXivPDFHTML
Abstract

Recent evaluation protocols for Cross-document (CD) coreference resolution have often been inconsistent or lenient, leading to incomparable results across works and overestimation of performance. To facilitate proper future research on this task, our primary contribution is proposing a pragmatic evaluation methodology which assumes access to only raw text -- rather than assuming gold mentions, disregards singleton prediction, and addresses typical targeted settings in CD coreference resolution. Aiming to set baseline results for future research that would follow our evaluation methodology, we build the first end-to-end model for this task. Our model adapts and extends recent neural models for within-document coreference resolution to address the CD coreference setting, which outperforms state-of-the-art results by a significant margin.

View on arXiv
Comments on this paper