ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.12462
8
3

Symbolic Relational Deep Reinforcement Learning based on Graph Neural Networks and Autoregressive Policy Decomposition

25 September 2020
Jaromír Janisch
Tomávs Pevný
Viliam Lisý
    AI4CE
ArXivPDFHTML
Abstract

We focus on reinforcement learning (RL) in relational problems that are naturally defined in terms of objects, their relations, and object-centric actions. These problems are characterized by variable state and action spaces, and finding a fixed-length representation, required by most existing RL methods, is difficult, if not impossible. We present a deep RL framework based on graph neural networks and auto-regressive policy decomposition that naturally works with these problems and is completely domain-independent. We demonstrate the framework's broad applicability in three distinct domains and show impressive zero-shot generalization over different problem sizes.

View on arXiv
Comments on this paper