ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.12981
7
212

Parametric UMAP embeddings for representation and semi-supervised learning

27 September 2020
Tim Sainburg
Leland McInnes
T. Gentner
ArXivPDFHTML
Abstract

UMAP is a non-parametric graph-based dimensionality reduction algorithm using applied Riemannian geometry and algebraic topology to find low-dimensional embeddings of structured data. The UMAP algorithm consists of two steps: (1) Compute a graphical representation of a dataset (fuzzy simplicial complex), and (2) Through stochastic gradient descent, optimize a low-dimensional embedding of the graph. Here, we extend the second step of UMAP to a parametric optimization over neural network weights, learning a parametric relationship between data and embedding. We first demonstrate that Parametric UMAP performs comparably to its non-parametric counterpart while conferring the benefit of a learned parametric mapping (e.g. fast online embeddings for new data). We then explore UMAP as a regularization, constraining the latent distribution of autoencoders, parametrically varying global structure preservation, and improving classifier accuracy for semi-supervised learning by capturing structure in unlabeled data. Google Colab walkthrough: https://colab.research.google.com/drive/1WkXVZ5pnMrm17m0YgmtoNjM_XHdnE5Vp?usp=sharing

View on arXiv
Comments on this paper