ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.13040
6
2

Local Minima Structures in Gaussian Mixture Models

28 September 2020
Yudong Chen
Dogyoon Song
Xumei Xi
Yuqian Zhang
ArXivPDFHTML
Abstract

We investigate the landscape of the negative log-likelihood function of Gaussian Mixture Models (GMMs) with a general number of components in the population limit. As the objective function is non-convex, there can be multiple local minima that are not globally optimal, even for well-separated mixture models. Our study reveals that all local minima share a common structure that partially identifies the cluster centers (i.e., means of the Gaussian components) of the true location mixture. Specifically, each local minimum can be represented as a non-overlapping combination of two types of sub-configurations: fitting a single mean estimate to multiple Gaussian components or fitting multiple estimates to a single true component. These results apply to settings where the true mixture components satisfy a certain separation condition, and are valid even when the number of components is over- or under-specified. We also present a more fine-grained analysis for the setting of one-dimensional GMMs with three components, which provide sharper approximation error bounds with improved dependence on the separation.

View on arXiv
Comments on this paper