ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.13284
28
42

Pchatbot: A Large-Scale Dataset for Personalized Chatbot

28 September 2020
Hongjin Qian
Xiaohe Li
Hanxun Zhong
Yu Guo
Yueyuan Ma
Yutao Zhu
Zhanliang Liu
Zhanliang Liu
Ji-Rong Wen
ArXivPDFHTML
Abstract

Natural language dialogue systems raise great attention recently. As many dialogue models are data-driven, high-quality datasets are essential to these systems. In this paper, we introduce Pchatbot, a large-scale dialogue dataset that contains two subsets collected from Weibo and Judicial forums respectively. To adapt the raw dataset to dialogue systems, we elaborately normalize the raw dataset via processes such as anonymization, deduplication, segmentation, and filtering. The scale of Pchatbot is significantly larger than existing Chinese datasets, which might benefit the data-driven models. Besides, current dialogue datasets for personalized chatbot usually contain several persona sentences or attributes. Different from existing datasets, Pchatbot provides anonymized user IDs and timestamps for both posts and responses. This enables the development of personalized dialogue models that directly learn implicit user personality from the user's dialogue history. Our preliminary experimental study benchmarks several state-of-the-art dialogue models to provide a comparison for future work. The dataset can be publicly accessed at Github.

View on arXiv
Comments on this paper