ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.13368
16
3
v1v2 (latest)

Using Resource-Rational Analysis to Understand Cognitive Biases in Interactive Data Visualizations

28 September 2020
Ryan Wesslen
D. Markant
Alireza Karduni
Wenwen Dou
ArXiv (abs)PDFHTML
Abstract

Cognitive biases are systematic errors in judgment. Researchers in data visualizations have explored whether cognitive biases transfer to decision-making tasks with interactive data visualizations. At the same time, cognitive scientists have reinterpreted cognitive biases as the product of resource-rational strategies under finite time and computational costs. In this paper, we argue for the integration of resource-rational analysis through constrained Bayesian cognitive modeling to understand cognitive biases in data visualizations. The benefit would be a more realistic "bounded rationality" representation of data visualization users and provides a research roadmap for studying cognitive biases in data visualizations through a feedback loop between future experiments and theory

View on arXiv
Comments on this paper