ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.14530
6
366

Asymmetric Contextual Modulation for Infrared Small Target Detection

30 September 2020
Yimian Dai
Yiquan Wu
Fei Zhou
Kobus Barnard
ArXivPDFHTML
Abstract

Single-frame infrared small target detection remains a challenge not only due to the scarcity of intrinsic target characteristics but also because of lacking a public dataset. In this paper, we first contribute an open dataset with high-quality annotations to advance the research in this field. We also propose an asymmetric contextual modulation module specially designed for detecting infrared small targets. To better highlight small targets, besides a top-down global contextual feedback, we supplement a bottom-up modulation pathway based on point-wise channel attention for exchanging high-level semantics and subtle low-level details. We report ablation studies and comparisons to state-of-the-art methods, where we find that our approach performs significantly better. Our dataset and code are available online.

View on arXiv
Comments on this paper