ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.01620
8
1

Meta Sequence Learning for Generating Adequate Question-Answer Pairs

4 October 2020
Cheng Zhang
Jie Wang
ArXivPDFHTML
Abstract

Creating multiple-choice questions to assess reading comprehension of a given article involves generating question-answer pairs (QAPs) on the main points of the document. We present a learning scheme to generate adequate QAPs via meta-sequence representations of sentences. A meta sequence is a sequence of vectors comprising semantic and syntactic tags. In particular, we devise a scheme called MetaQA to learn meta sequences from training data to form pairs of a meta sequence for a declarative sentence (MD) and a corresponding interrogative sentence (MIs). On a given declarative sentence, a trained MetaQA model converts it to a meta sequence, finds a matched MD, and uses the corresponding MIs and the input sentence to generate QAPs. We implement MetaQA for the English language using semantic-role labeling, part-of-speech tagging, and named-entity recognition, and show that trained on a small dataset, MetaQA generates efficiently over the official SAT practice reading tests a large number of syntactically and semantically correct QAPs with over 97\% accuracy.

View on arXiv
Comments on this paper