ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.01838
15
51

Discern: Discourse-Aware Entailment Reasoning Network for Conversational Machine Reading

5 October 2020
Yifan Gao
Chien-Sheng Wu
Jingjing Li
Shafiq R. Joty
S. Hoi
Caiming Xiong
Irwin King
M. Lyu
    FedML
ArXivPDFHTML
Abstract

Document interpretation and dialog understanding are the two major challenges for conversational machine reading. In this work, we propose Discern, a discourse-aware entailment reasoning network to strengthen the connection and enhance the understanding for both document and dialog. Specifically, we split the document into clause-like elementary discourse units (EDU) using a pre-trained discourse segmentation model, and we train our model in a weakly-supervised manner to predict whether each EDU is entailed by the user feedback in a conversation. Based on the learned EDU and entailment representations, we either reply to the user our final decision "yes/no/irrelevant" of the initial question, or generate a follow-up question to inquiry more information. Our experiments on the ShARC benchmark (blind, held-out test set) show that Discern achieves state-of-the-art results of 78.3% macro-averaged accuracy on decision making and 64.0 BLEU1 on follow-up question generation. Code and models are released at https://github.com/Yifan-Gao/Discern.

View on arXiv
Comments on this paper