ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.01908
13
13

Exploiting Unsupervised Data for Emotion Recognition in Conversations

2 October 2020
Wenxiang Jiao
M. Lyu
Irwin King
ArXivPDFHTML
Abstract

Emotion Recognition in Conversations (ERC) aims to predict the emotional state of speakers in conversations, which is essentially a text classification task. Unlike the sentence-level text classification problem, the available supervised data for the ERC task is limited, which potentially prevents the models from playing their maximum effect. In this paper, we propose a novel approach to leverage unsupervised conversation data, which is more accessible. Specifically, we propose the Conversation Completion (ConvCom) task, which attempts to select the correct answer from candidate answers to fill a masked utterance in a conversation. Then, we Pre-train a basic COntext- Dependent Encoder (Pre-CODE) on the ConvCom task. Finally, we fine-tune the Pre-CODE on the datasets of ERC. Experimental results demonstrate that pre-training on unsupervised data achieves significant improvement of performance on the ERC datasets, particularly on the minority emotion classes.

View on arXiv
Comments on this paper