ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.02126
11
10
v1v2v3v4 (latest)

Bayesian Fixed-domain Asymptotics for Covariance Parameters in a Gaussian Process Model

5 October 2020
Cheng Li
ArXiv (abs)PDFHTML
Abstract

Gaussian process models typically contain finite dimensional parameters in the covariance function that need to be estimated from the data. We study the Bayesian fixed-domain asymptotics for the covariance parameters in a universal kriging model with an isotropic Matern covariance function, which has many applications in spatial statistics. We show that when the dimension of domain is less than or equal to three, the joint posterior distribution of the microergodic parameter and the range parameter can be factored independently into the product of their marginal posteriors under fixed-domain asymptotics. The posterior of the microergodic parameter is asymptotically close in total variation distance to a normal distribution with shrinking variance, while the posterior distribution of the range parameter does not converge to any point mass distribution in general. Our theory allows an unbounded prior support for the range parameter and flexible designs of sampling points. We further study the asymptotic efficiency and convergence rates in posterior prediction for the Bayesian kriging predictor with covariance parameters randomly drawn from their posterior distribution. In the special case of one-dimensional Ornstein-Uhlenbeck process, we derive explicitly the limiting posterior of the range parameter and the posterior convergence rate for asymptotic efficiency in posterior prediction. We verify these asymptotic results in numerical experiments.

View on arXiv
Comments on this paper