ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.03127
12
10

A Linguistic Analysis of Visually Grounded Dialogues Based on Spatial Expressions

7 October 2020
Takuma Udagawa
T. Yamazaki
Akiko Aizawa
ArXivPDFHTML
Abstract

Recent models achieve promising results in visually grounded dialogues. However, existing datasets often contain undesirable biases and lack sophisticated linguistic analyses, which make it difficult to understand how well current models recognize their precise linguistic structures. To address this problem, we make two design choices: first, we focus on OneCommon Corpus \citep{udagawa2019natural,udagawa2020annotated}, a simple yet challenging common grounding dataset which contains minimal bias by design. Second, we analyze their linguistic structures based on \textit{spatial expressions} and provide comprehensive and reliable annotation for 600 dialogues. We show that our annotation captures important linguistic structures including predicate-argument structure, modification and ellipsis. In our experiments, we assess the model's understanding of these structures through reference resolution. We demonstrate that our annotation can reveal both the strengths and weaknesses of baseline models in essential levels of detail. Overall, we propose a novel framework and resource for investigating fine-grained language understanding in visually grounded dialogues.

View on arXiv
Comments on this paper