ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.04610
57
34
v1v2v3v4 (latest)

Roughness in spot variance? A GMM approach for estimation of fractional log-normal stochastic volatility models using realized measures

9 October 2020
Anine Eg Bolko
Kim Christensen
Mikko S. Pakkanen
Bezirgen Veliyev
ArXiv (abs)PDFHTML
Abstract

In this paper, we develop a generalized method of moments approach for joint estimation of the parameters of a fractional log-normal stochastic volatility model. We show that with an arbitrary Hurst exponent an estimator based on integrated variance is consistent. Moreover, under stronger conditions we also derive a central limit theorem. These results stand even when integrated variance is replaced with a realized measure of volatility calculated from discrete high-frequency data. However, in practice a realized estimator contains sampling error, the effect of which is to skew the fractal coefficient toward "roughness". We construct an analytical approach to control this error. In a simulation study, we demonstrate convincing small sample properties of our approach based both on integrated and realized variance over the entire memory spectrum. We show that the bias correction attenuates any systematic deviance in the estimated parameters. Our procedure is applied to empirical high-frequency data from numerous leading equity indexes. With our robust approach the Hurst index is estimated around 0.05, confirming roughness in integrated variance.

View on arXiv
Comments on this paper