ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.04927
16
2

Cue-word Driven Neural Response Generation with a Shrinking Vocabulary

10 October 2020
Qiansheng Wang
Yuxin Liu
Chengguo Lv
Zhen Wang
Guohong Fu
ArXivPDFHTML
Abstract

Open-domain response generation is the task of generating sensible and informative re-sponses to the source sentence. However, neural models tend to generate safe and mean-ingless responses. While cue-word introducing approaches encourage responses with concrete semantics and have shown tremendous potential, they still fail to explore di-verse responses during decoding. In this paper, we propose a novel but natural approach that can produce multiple cue-words during decoding, and then uses the produced cue-words to drive decoding and shrinks the decoding vocabulary. Thus the neural genera-tion model can explore the full space of responses and discover informative ones with efficiency. Experimental results show that our approach significantly outperforms several strong baseline models with much lower decoding complexity. Especially, our approach can converge to concrete semantics more efficiently during decoding.

View on arXiv
Comments on this paper