ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.05587
8
19

Social Commonsense Reasoning with Multi-Head Knowledge Attention

12 October 2020
Debjit Paul
Anette Frank
    LRM
ArXivPDFHTML
Abstract

Social Commonsense Reasoning requires understanding of text, knowledge about social events and their pragmatic implications, as well as commonsense reasoning skills. In this work we propose a novel multi-head knowledge attention model that encodes semi-structured commonsense inference rules and learns to incorporate them in a transformer-based reasoning cell. We assess the model's performance on two tasks that require different reasoning skills: Abductive Natural Language Inference and Counterfactual Invariance Prediction as a new task. We show that our proposed model improves performance over strong state-of-the-art models (i.e., RoBERTa) across both reasoning tasks. Notably we are, to the best of our knowledge, the first to demonstrate that a model that learns to perform counterfactual reasoning helps predicting the best explanation in an abductive reasoning task. We validate the robustness of the model's reasoning capabilities by perturbing the knowledge and provide qualitative analysis on the model's knowledge incorporation capabilities.

View on arXiv
Comments on this paper