ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.05761
14
303

The Risks of Invariant Risk Minimization

12 October 2020
Elan Rosenfeld
Pradeep Ravikumar
Andrej Risteski
    OOD
ArXivPDFHTML
Abstract

Invariant Causal Prediction (Peters et al., 2016) is a technique for out-of-distribution generalization which assumes that some aspects of the data distribution vary across the training set but that the underlying causal mechanisms remain constant. Recently, Arjovsky et al. (2019) proposed Invariant Risk Minimization (IRM), an objective based on this idea for learning deep, invariant features of data which are a complex function of latent variables; many alternatives have subsequently been suggested. However, formal guarantees for all of these works are severely lacking. In this paper, we present the first analysis of classification under the IRM objective--as well as these recently proposed alternatives--under a fairly natural and general model. In the linear case, we show simple conditions under which the optimal solution succeeds or, more often, fails to recover the optimal invariant predictor. We furthermore present the very first results in the non-linear regime: we demonstrate that IRM can fail catastrophically unless the test data are sufficiently similar to the training distribution--this is precisely the issue that it was intended to solve. Thus, in this setting we find that IRM and its alternatives fundamentally do not improve over standard Empirical Risk Minimization.

View on arXiv
Comments on this paper