Acute and chronic wounds have varying etiologies and are an economic burden
to healthcare systems around the world. The advanced wound care market is
expected to exceed 22billionby2024.Woundcareprofessionalsrelyheavilyonimagesandimagedocumentationforproperdiagnosisandtreatment.Unfortunatelylackofexpertisecanleadtoimproperdiagnosisofwoundetiologyandinaccuratewoundmanagementanddocumentation.Fullyautomaticsegmentationofwoundareasinnaturalimagesisanimportantpartofthediagnosisandcareprotocolsinceitiscrucialtomeasuretheareaofthewoundandprovidequantitativeparametersinthetreatment.Variousdeeplearningmodelshavegainedsuccessinimageanalysisincludingsemanticsegmentation.Particularly,MobileNetV2standsoutamongothersduetoitslightweightarchitectureanduncompromisedperformance.ThismanuscriptproposesanovelconvolutionalframeworkbasedonMobileNetV2andconnectedcomponentlabellingtosegmentwoundregionsfromnaturalimages.Webuildanannotatedwoundimagedatasetconsistingof1,109footulcerimagesfrom889patientstotrainandtestthedeeplearningmodels.Wedemonstratetheeffectivenessandmobilityofourmethodbyconductingcomprehensiveexperimentsandanalysesonvarioussegmentationneuralnetworks.