ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.05985
38
3

NEMO: Frequentist Inference Approach to Constrained Linguistic Typology Feature Prediction in SIGTYP 2020 Shared Task

12 October 2020
Alexander Gutkin
R. Sproat
ArXiv (abs)PDFHTML
Abstract

This paper describes the NEMO submission to SIGTYP 2020 shared task which deals with prediction of linguistic typological features for multiple languages using the data derived from World Atlas of Language Structures (WALS). We employ frequentist inference to represent correlations between typological features and use this representation to train simple multi-class estimators that predict individual features. We describe two submitted ridge regression-based configurations which ranked second and third overall in the constrained task. Our best configuration achieved the micro-averaged accuracy score of 0.66 on 149 test languages.

View on arXiv
Comments on this paper