ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.06026
19
5

A Generalized Stacking for Implementing Ensembles of Gradient Boosting Machines

12 October 2020
A. Konstantinov
Lev V. Utkin
ArXivPDFHTML
Abstract

The gradient boosting machine is one of the powerful tools for solving regression problems. In order to cope with its shortcomings, an approach for constructing ensembles of gradient boosting models is proposed. The main idea behind the approach is to use the stacking algorithm in order to learn a second-level meta-model which can be regarded as a model for implementing various ensembles of gradient boosting models. First, the linear regression of the gradient boosting models is considered as a simplest realization of the meta-model under condition that the linear model is differentiable with respect to its coefficients (weights). Then it is shown that the proposed approach can be simply extended on arbitrary differentiable combination models, for example, on neural networks which are differentiable and can implement arbitrary functions of gradient boosting models. Various numerical examples illustrate the proposed approach.

View on arXiv
Comments on this paper