Tail asymptotics for the bivariate equi-skew Variance-Gamma distribution

Abstract
We derive the asymptotic rate of decay to zero of the tail dependence of the bivariate skew Variance Gamma (VG) distribution under the equal-skewness condition, as an explicit regularly varying function. Our development is in terms of a slightly more general bivariate skew Generalized Hyperbolic (GH) distribution. Our initial reduction of the bivariate problem to a univariate one is motivated by our earlier study of tail dependence rate for the bivariate skew normal distribution
View on arXivComments on this paper