ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.06219
12
0

Investigating the Scalability and Biological Plausibility of the Activation Relaxation Algorithm

13 October 2020
Beren Millidge
Alexander Tschantz
A. Seth
Christopher L. Buckley
ArXivPDFHTML
Abstract

The recently proposed Activation Relaxation (AR) algorithm provides a simple and robust approach for approximating the backpropagation of error algorithm using only local learning rules. Unlike competing schemes, it converges to the exact backpropagation gradients, and utilises only a single type of computational unit and a single backwards relaxation phase. We have previously shown that the algorithm can be further simplified and made more biologically plausible by (i) introducing a learnable set of backwards weights, which overcomes the weight-transport problem, and (ii) avoiding the computation of nonlinear derivatives at each neuron. However, tthe efficacy of these simplifications has, so far, only been tested on simple multi-layer-perceptron (MLP) networks. Here, we show that these simplifications still maintain performance using more complex CNN architectures and challenging datasets, which have proven difficult for other biologically-plausible schemes to scale to. We also investigate whether another biologically implausible assumption of the original AR algorithm -- the frozen feedforward pass -- can be relaxed without damaging performance.

View on arXiv
Comments on this paper