ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.06962
11
5

Self-Imitation Learning for Robot Tasks with Sparse and Delayed Rewards

14 October 2020
Zhixin Chen
Mengxiang Lin
ArXivPDFHTML
Abstract

The application of reinforcement learning (RL) in robotic control is still limited in the environments with sparse and delayed rewards. In this paper, we propose a practical self-imitation learning method named Self-Imitation Learning with Constant Reward (SILCR). Instead of requiring hand-defined immediate rewards from environments, our method assigns the immediate rewards at each timestep with constant values according to their final episodic rewards. In this way, even if the dense rewards from environments are unavailable, every action taken by the agents would be guided properly. We demonstrate the effectiveness of our method in some challenging continuous robotics control tasks in MuJoCo simulation and the results show that our method significantly outperforms the alternative methods in tasks with sparse and delayed rewards. Even compared with alternatives with dense rewards available, our method achieves competitive performance. The ablation experiments also show the stability and reproducibility of our method.

View on arXiv
Comments on this paper