ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.07621
14
43

HS-ResNet: Hierarchical-Split Block on Convolutional Neural Network

15 October 2020
P. Yuan
Shufei Lin
Cheng Cui
Yuning Du
Ruoyu Guo
Dongliang He
Errui Ding
Shumin Han
ArXivPDFHTML
Abstract

This paper addresses representational block named Hierarchical-Split Block, which can be taken as a plug-and-play block to upgrade existing convolutional neural networks, improves model performance significantly in a network. Hierarchical-Split Block contains many hierarchical split and concatenate connections within one single residual block. We find multi-scale features is of great importance for numerous vision tasks. Moreover, Hierarchical-Split block is very flexible and efficient, which provides a large space of potential network architectures for different applications. In this work, we present a common backbone based on Hierarchical-Split block for tasks: image classification, object detection, instance segmentation and semantic image segmentation/parsing. Our approach shows significant improvements over all these core tasks in comparison with the baseline. As shown in Figure1, for image classification, our 50-layers network(HS-ResNet50) achieves 81.28% top-1 accuracy with competitive latency on ImageNet-1k dataset. It also outperforms most state-of-the-art models. The source code and models will be available on: https://github.com/PaddlePaddle/PaddleClas

View on arXiv
Comments on this paper