ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.08067
9
0

Montague Grammar Induction

15 October 2020
Gene Louis Kim
Aaron Steven White
ArXivPDFHTML
Abstract

We propose a computational modeling framework for inducing combinatory categorial grammars from arbitrary behavioral data. This framework provides the analyst fine-grained control over the assumptions that the induced grammar should conform to: (i) what the primitive types are; (ii) how complex types are constructed; (iii) what set of combinators can be used to combine types; and (iv) whether (and to what) the types of some lexical items should be fixed. In a proof-of-concept experiment, we deploy our framework for use in distributional analysis. We focus on the relationship between s(emantic)-selection and c(ategory)-selection, using as input a lexicon-scale acceptability judgment dataset focused on English verbs' syntactic distribution (the MegaAcceptability dataset) and enforcing standard assumptions from the semantics literature on the induced grammar.

View on arXiv
Comments on this paper