We develop a nonparametric extension of the sequential generalized likelihood ratio (GLR) test and corresponding time-uniform confidence sequences for the mean parameter of a univariate distribution. By utilizing a geometric interpretation of the GLR statistic, we derive a simple upper bound on the probability that it exceeds any prespecified boundary. Using time-uniform boundary-crossing inequalities, we carry out a unified nonasymptotic analysis of the sample complexity of one-sided and open-ended tests over nonparametric classes of distributions (including sub-Gaussian, sub-exponential, sub-gamma, and exponential families). We present a flexible and practical method to construct time-uniform confidence sequences that are easily tunable to be uniformly close to the pointwise Chernoff bound over any target time interval.
View on arXiv