ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.08532
12
0

Towards Accurate Knowledge Transfer via Target-awareness Representation Disentanglement

16 October 2020
Xingjian Li
Di Hu
Xuhong Li
Haoyi Xiong
Zhiquan Ye
Zhipeng Wang
Chengzhong Xu
Dejing Dou
    AAML
ArXivPDFHTML
Abstract

Fine-tuning deep neural networks pre-trained on large scale datasets is one of the most practical transfer learning paradigm given limited quantity of training samples. To obtain better generalization, using the starting point as the reference (SPAR), either through weights or features, has been successfully applied to transfer learning as a regularizer. However, due to the domain discrepancy between the source and target task, there exists obvious risk of negative transfer in a straightforward manner of knowledge preserving. In this paper, we propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED), where the relevant knowledge with respect to the target task is disentangled from the original source model and used as a regularizer during fine-tuning the target model. Specifically, we design two alternative methods, maximizing the Maximum Mean Discrepancy (Max-MMD) and minimizing the mutual information (Min-MI), for the representation disentanglement. Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average. TRED also outperforms related state-of-the-art transfer learning regularizers such as L2-SP, AT, DELTA, and BSS.

View on arXiv
Comments on this paper