ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.09336
20
15
v1v2v3 (latest)

Causal Discovery using Compression-Complexity Measures

19 October 2020
Pranay Yadav
N. Nagaraj
    CML
ArXiv (abs)PDFHTML
Abstract

Causal inference is one of the most fundamental problems across all domains of science. We address the problem of inferring a causal direction from two observed discrete symbolic sequences XXX and YYY. We present a framework which relies on lossless compressors for inferring context-free grammars (CFGs) from sequence pairs and quantifies the extent to which the grammar inferred from one sequence compresses the other sequence. We infer XXX causes YYY if the grammar inferred from XXX better compresses YYY than in the other direction. To put this notion to practice, we propose three models that use the Compression-Complexity Measures (CCMs) - Lempel-Ziv (LZ) complexity and Effort-To-Compress (ETC) to infer CFGs and discover causal directions without demanding temporal structures. We evaluate these models on synthetic and real-world benchmarks and empirically observe performances competitive with current state-of-the-art methods. Lastly, we present two unique applications of the proposed models for causal inference directly from pairs of genome sequences belonging to the SARS-CoV-2 virus. Using a large number of sequences, we show that our models capture directed causal information exchange between sequence pairs, presenting novel opportunities for addressing key issues such as contact-tracing, motif discovery, evolution of virulence and pathogenicity in future applications.

View on arXiv
Comments on this paper