ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.09540
19
2

Statistical Guarantees and Algorithmic Convergence Issues of Variational Boosting

19 October 2020
B. Guha
A. Bhattacharya
D. Pati
ArXivPDFHTML
Abstract

We provide statistical guarantees for Bayesian variational boosting by proposing a novel small bandwidth Gaussian mixture variational family. We employ a functional version of Frank-Wolfe optimization as our variational algorithm and study frequentist properties of the iterative boosting updates. Comparisons are drawn to the recent literature on boosting, describing how the choice of the variational family and the discrepancy measure affect both convergence and finite-sample statistical properties of the optimization routine. Specifically, we first demonstrate stochastic boundedness of the boosting iterates with respect to the data generating distribution. We next integrate this within our algorithm to provide an explicit convergence rate, ending with a result on the required number of boosting updates.

View on arXiv
Comments on this paper