ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.09623
28
4

An Empirical Study for Vietnamese Constituency Parsing with Pre-training

19 October 2020
Tuan-Vi Tran
Xuan-Thien Pham
Duc-Vu Nguyen
Kiet Van Nguyen
N. Nguyen
ArXivPDFHTML
Abstract

In this work, we use a span-based approach for Vietnamese constituency parsing. Our method follows the self-attention encoder architecture and a chart decoder using a CKY-style inference algorithm. We present analyses of the experiment results of the comparison of our empirical method using pre-training models XLM-Roberta and PhoBERT on both Vietnamese datasets VietTreebank and NIIVTB1. The results show that our model with XLM-Roberta archived the significantly F1-score better than other pre-training models, VietTreebank at 81.19% and NIIVTB1 at 85.70%.

View on arXiv
Comments on this paper