ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.10504
98
290

Pushing the Limits of Semi-Supervised Learning for Automatic Speech Recognition

20 October 2020
Yu Zhang
James Qin
Daniel S. Park
Wei Han
Chung-Cheng Chiu
Ruoming Pang
Quoc V. Le
Yonghui Wu
    VLM
    SSL
ArXivPDFHTML
Abstract

We employ a combination of recent developments in semi-supervised learning for automatic speech recognition to obtain state-of-the-art results on LibriSpeech utilizing the unlabeled audio of the Libri-Light dataset. More precisely, we carry out noisy student training with SpecAugment using giant Conformer models pre-trained using wav2vec 2.0 pre-training. By doing so, we are able to achieve word-error-rates (WERs) 1.4%/2.6% on the LibriSpeech test/test-other sets against the current state-of-the-art WERs 1.7%/3.3%.

View on arXiv
Comments on this paper