ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.10670
42
21

Iterative Amortized Policy Optimization

20 October 2020
Joseph Marino
Alexandre Piché
Alessandro Davide Ialongo
Yisong Yue
    OffRL
ArXivPDFHTML
Abstract

Policy networks are a central feature of deep reinforcement learning (RL) algorithms for continuous control, enabling the estimation and sampling of high-value actions. From the variational inference perspective on RL, policy networks, when used with entropy or KL regularization, are a form of \textit{amortized optimization}, optimizing network parameters rather than the policy distributions directly. However, \textit{direct} amortized mappings can yield suboptimal policy estimates and restricted distributions, limiting performance and exploration. Given this perspective, we consider the more flexible class of \textit{iterative} amortized optimizers. We demonstrate that the resulting technique, iterative amortized policy optimization, yields performance improvements over direct amortization on benchmark continuous control tasks.

View on arXiv
Comments on this paper