ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.10901
25
5
v1v2 (latest)

On Information Asymmetry in Competitive Multi-Agent Reinforcement Learning: Convergence and Optimality

21 October 2020
Ezra Tampubolon
Haris Ceribasic
Holger Boche
ArXiv (abs)PDFHTML
Abstract

In this work, we study the system of interacting non-cooperative two Q-learning agents, where one agent has the privilege of observing the other's actions. We show that this information asymmetry can lead to a stable outcome of population learning, which generally does not occur in an environment of general independent learners. The resulting post-learning policies are almost optimal in the underlying game sense, i.e., they form a Nash equilibrium. Furthermore, we propose in this work a Q-learning algorithm, requiring predictive observation of two subsequent opponent's actions, yielding an optimal strategy given that the latter applies a stationary strategy, and discuss the existence of the Nash equilibrium in the underlying information asymmetrical game.

View on arXiv
Comments on this paper