ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.10996
17
31

GFL: A Decentralized Federated Learning Framework Based On Blockchain

21 October 2020
Yifan Hu
Yuhang Zhou
Jun Xiao
Chao-Xiang Wu
    FedML
ArXivPDFHTML
Abstract

Federated learning(FL) is a rapidly growing field and many centralized and decentralized FL frameworks have been proposed. However, it is of great challenge for current FL frameworks to improve communication performance and maintain the security and robustness under malicious node attacks. In this paper, we propose Galaxy Federated Learning Framework(GFL), a decentralized FL framework based on blockchain. GFL introduces the consistent hashing algorithm to improve communication performance and proposes a novel ring decentralized FL algorithm(RDFL) to improve decentralized FL performance and bandwidth utilization. In addition, GFL introduces InterPlanetary File System(IPFS) and blockchain to further improve communication efficiency and FL security. Our experiments show that GFL improves communication performance and decentralized FL performance under the data poisoning of malicious nodes and non-independent and identically distributed(Non-IID) datasets.

View on arXiv
Comments on this paper