ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.11032
13
20

Classifying Syntactic Errors in Learner Language

21 October 2020
Leshem Choshen
Dmitry Nikolaev
Yevgeni Berzak
Omri Abend
ArXivPDFHTML
Abstract

We present a method for classifying syntactic errors in learner language, namely errors whose correction alters the morphosyntactic structure of a sentence. The methodology builds on the established Universal Dependencies syntactic representation scheme, and provides complementary information to other error-classification systems. Unlike existing error classification methods, our method is applicable across languages, which we showcase by producing a detailed picture of syntactic errors in learner English and learner Russian. We further demonstrate the utility of the methodology for analyzing the outputs of leading Grammatical Error Correction (GEC) systems.

View on arXiv
Comments on this paper